
Section 2.1.2.5 TECHNICAL PROGRESS

instead of being interface procedures of a separate module. The use of new
compiler directives, and an extended concept of FORWARD procedures, support the
use of compiletime libraries. Small system procedures have been put into a
standard compiletime library which is automatically utilized during the
compilation of any module which invokes one of the procedures.

cmdrile (command file) and logFile (logging file) are now the standard
input and output files used by the compiler and the runtime system where tty
(i.e., the user's terminal) was previously used. Both are initially opened to
tty. These files are used instead of tty so that the user can "redirect" the
standard input or output stream if desired. This can be done via subcornmands at
the start of program execution, or via explicit opens during program execution.
The system procedures ttyRead and ttyWrite still provide direct communication
with tty.

The CHECK and NOCHECK compiler directives have been implemented. CHECK
directs the compiler to henceforth emit code to check certain conditions (such as
array subscripts and NULLPOINTER's) at runtime which cannot be determined at
compiletime. NOCHECK can be used to turn such checking off. These directives
have been in the language (in a slightly different form), but they had never been
implemented in the code generators.

FlAINSAIL has previously guaranteed ASCII character codes. This requires a
translation on machines with other character codes (e.g., the IBM-370 uses
EBCDIC). Our experience shows it is not difficult to write programs
independently of the character codes if certain minimal assumptions are in
effect. For example, the characters A.. .Z are guaranteed to be in alphabetic
order, but they are not necessarily contiguous. We have also introduced eol
(end-of-line) in place of the previous ASCII-dependent crlf (carriage-return-
line-feed), and eop (end-of-page) in place of the ASCII form-feed. eol and eop
are defined as implementation-dependent string constants. Character
incompatibilities among machines is a difficult problem to deal with, and may
ultimately complicate MAINSAIL’s implementation on machines with "deficient"
character sets (e.g., a CDC with a 6-bit character set).

Compiler Design

Two steps have been taken with the goal of getting the compiler to execute
in a small address space. First, it has been broken into smaller modules. It
used to consist of about 10 modules, but now consists of about 60. This allows a
more accurate working set of modules to build up in memory since no one module is
so large that it displaces most of those currently resident. However, there is
more overhead involved in initializing so many modules on machines which have
sufficient memory for the entire compiler. The second step has been the sire
reduction or elimination of many of the compiler's data structures. Where
possible data is maintained on a file rather than in memory.

To save the space required by the text of string constants, the compiler
error messages have been placed on a file. Calls to error message procedures
specify the location on the file of the appropriate error message, A program has
been written to generate a new compiler error message file by comb ining the
messages on an existing error message file with any new messages specified as
string constant arguments to error procedures in the compiler modules.

J. Lederberg & E. Feigenbaum 26

TECHNICAL PROGRESS Section 2.1.2.5

The code generators have been modified to output additional information (in
a separate file) for debugging use during execution. This debugging file is
created only if requested as a subcommand to the compiler. It contains a symbol
table and a cross reference between the generated code and the source files.

Documentation

A new MAINSAIL manual is nearly complete. The former manual was an
alphabetically ordered reference manual written primarily for internal use, that
is, for those who were either already familiar with MAINSAIL or who at least knew
SAIL. The new manual is a more readable reorganization and expansion of the
reference manual information, organized by topic (e.g., data types, procedures,
modules), and incorporating numerous examples.

Concurrent with the writing of the manual was the development of a
formatting program to input the manual as written (with encoded section numbers
and index references, no table of contents, etc.) and output a complete, ready-
to-print manual.

An invited paper entitled "The MAINSAIL Project: Developing Tools for
Software Portability" was delivered at the First Annual Symposium on Computer
Application in Medical Care; given in Washington, D.C. in October, 1977. This
has resulted in a number of inquiries from researchers interested in MAINSAIL's
portability.

Emulation Research

The goal of the emulation research is to determine efficient means of
representing MAINSAIL programs for interpretive execution. If the interpreter
can be written in the microcode of the host machine, the resulting emulation
should be more efficient than execution of MAINSAIL translated into a standard
machine code. This approach simplifies compilation, and allows the efficient
monitoring of program execution, so that debugging capabilities and performance
measurements can become an integral part of program execution.

Statistics gathered from programs written in MAINSAIL have been used to
guide and justify the design of a language representation suitable for emulation.
An interpreter has been developed, and the static and dynamic properties of the
resulting high level MAINSAIL interpretation are now under study. Its properties
will be compared with conventional machine language implementations of MAINSAIL.
The generated code appears to be about a third the size of standard machine code.
It is more difficult to measure execution time differences since the processor
design must be taken into account.

The characteristics of a suitable host processor to support the emulation
are being examined in detail. It appears that a "universal host" (i.e., a
processor not designed with a particular representation in mind) will not be able
to execute a tailor-made representation as fast as a conventional processor can
execute a standard machine language representation. Thus a "poor" representation
on a processor designed to execute that representation seems faster than a "good"
representation on a processor not designed for that representation. For this
reason a microcode and processor organization which are oriented toward execution
of the MAINSAIL representation are under design.

27 J. Lederberg G E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

Because of its generality and power, however, INTERLISP tends to be a
expensive system to run, requiring a large amount of computational t ime and a
large address space. While the expense of such a system is justifiable in a
research and development environment, it may not be in more operational
environments where these programs are to be used. One way to overcome this cost
is by designing more economical LISP systems - several groups are working on
this. These systems are typically built around special-purpose "LISP machines".
Over the past year we examined another alternative, converting a MYCIN-like
system into an algorithmic programing language (such as SAIL or MAINSAIL). This
approach may offer advantages in being able to run versions of MYCIN-like systems

find ways
of the
approach

i ti
Several

on existing laboratory computers. The objectives of this study were to
to trim the resource requirements of the system while preserving as much
knouledge representation clarity and modularity of the production system
as possible. One of the major hurdles to be overcome is the difference
program and data representations between LISP and algorithmic languages.
different approaches and languages were explored. Some are implementable in
almost any algorithmic language, while others exploit features unique to certain
languages.

ALGORITHMIC LANGUAGE IMPLEMENTATIONS E MYCIN-LIKE SYSTEMS

Production systems (PSI have been used extensively for knowledge
representations for a number of AI applications such as MYCIN (2). Traditionally
these systems have been implemented in various dialects of LISP. This has been
so partly because LISP contains several "natural" representations for PS's, and
partly because of the unique development and debugging environment offered by
systems like INTERLISP.

The principal design features of MYCIN include (31:

1) A rule based consultation system. The knowledge is represented
as collection of production rules. The consultation is driven by
a goal directed search of the knowledge base.

2) An examination program which will explain the "line of reasoning"
the system has gone through to produce the current consultation.

31 A question-answer system to query the system on parts of the
consultation, or to ask general questions of the knowledge base.

41 A method of updating the knowledge base, by adding new rules or
changing or deleting incorrect rules.

The knowledge base for the system is stored as a collection of production
rules in the form of PREMISE-ACTION pairs. The consultation is driven by a goal-

(2) See for example, Davis, R., Buchanan, B., and Shortliffe, E.,
"Production Rules as a Representation for a Knowledge-Based Consultation
Program, ' Artificial Intelliqence, Vol 8, No 1, February 1977.

(3) see for example, Shortliffe, E.H., "Computer-Based Medical
Consultations: MYCIN," Artificial Intelligence Series 2, Elsevier, New York,
1976.

J. Lederberg & E. Feigenbaum 28

TECHNICAL PROGRESS Section 2.1.2.5

directed search of these rules, i.e. if the PREMISE of a rule depends on the
value of a given parameter and its value is not known, rules which conclude
something about that parameter value are evaluated. The flow of control depends
on an interaction between goals stated in the IF clause of one rule, and the THEN
clause in others where this interaction changes as the rule base is changed.
This can be readily achieved in LISP by storing the executable PREMISE-ACTION
routines as properties of the various rules and linking them in a 1 ist. This
unity betueen program and data is one of the key points in the difference between
a LISP approach and one using an algorithmic languages.

Considerations in Non-LISP Approaches to MYCIN

MYCIN can be viewed as a very complex “IF THEN” clause, but this ignores
the flexibility and modularity of knowledge representation of a PS. At the very
least, the programming language should have the capability of creating LISP-like
data structures, such as trees and lists. If we examine the nature of the rule
interpretation, we can see that it is recursive in nature, so the language should
also support recursive procedures. Many modern languages such as SAIL, PASCAL.
and MAINSAIL have these features.

The main problem is to represent the rules in such a way that they can be
executed or interpreted in some sense, but can also be woven into the data base
so that they may be fetched, examined, and modified when needed. We need to
unify the control store and the data store in a way similar to that of LISP. We
have looked at two approaches: one in which the rules are represented strictly as
data, and interpreted as needed, and one in which the rules are represented as
procedures.

Rule Interpretation Approach

In this approach the production rules are represented strictly as data, and
procedures written to interpret the data structure. This is equivalent to
writing a small, special purpose LISP interpreter. Any language which fills the
requirements outlined above can be used to write the interpreter. The general
procedures needed for this approach are:

1) A procedure to insure that atoms are unique

2) Procedures to read and write the data structures.

3) A procedure for each of the LISP functions to be executed, e.g.,
logical operations.

4) A procedure equivalent to LISP’s EVAL, which will examine a list
and invoke the correct procedures to interpret it.

This scheme has many of the advantages of the LISP version. It is easy to
add new rules to the system that use only the currently defined functions. The
hope would be that this interpreter would be smaller and faster than equivalent
more general LISP machinery. Some disadvantages are that if a new function is
needed, the EVAL section of the program must be rewritten and recompiled. The
effort involved on this can be minimized by proper modularization, however.

29 J. Lederberg & E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

Procedural Approaches

In these approaches we generate procedures which perforrn the following
functions for each rule in the knowledge base:

1) Execute the PREMISE of the rule, and return a value indicating
whether or not the PREMISE is true. In addition there must be a
mechanism for marking which clause of the premise failed, if any.

2) Execute the ACTION of the rule.

3) Return a list of the parameters appearing in the PREMISE of the
rule (also marking which clause they occur in).

4) Return the parameter (or list of parameters] referenced in the
ACTION of the rule.

5) Print an English version of the rule.

These procedures can be generated automatically either translating LISP
rules from NYCIN or translating an English input. In this way, we have replaced
the interpretation of the rules as data structures with procedures that return
truth values and carry out the actions. Besides the procedures, there is also a
data structure which represents the interconnection of the rules. This approach
could be faster than the interpreter for rules since we effectively have
interpreted the rules once and for all at compile time.

Case Statement Procedures

In this implementation, a procedure is constructed for each of the
functions mentioned above. The procedure takes an integer representing the rule
number, and executes the proper subsection for that rule. For example, we might
have:

BOOLEAN PROCEDURE prernise (INTEGER ruleNo 1;
CASE ruleNo OF

BEGIN
i 1 I < PREMISE of RULE001 >
t 2 I < PREMISE of RULE002 >

END;

By marking a parallel data structure, we can trace which rules and which clauses
of which rules have been executed.

A disadvantage to this method is the relative inflexibility of the rule
base once it has been uritten. This can be alleviated to some degree by proper
rnodularization.

J. Lederberg 1. E. Feigenbaum 30

TECHNICAL PROGRESS Section 2.1.2.5

MAINSAIL Implementation

This approach exploits some of the unique features of MAINSAIL. A MAINSAIL
program is broken up into a number of NODULE's, which communicate with each other
by means of interface fields. Each rule is represented as a different module,
each with the same interface field definition. The interface field represents
the values and procedures outlined above. The rule modules are stored in
libraries for execution as needed. The fact that the data section of a module
may be assigned to a pointer variable gives us the ability to unite the control
store and the data store.

There are two possible methods of evaluating the rules. The first is to
create instances of all the rules, and save the pointers to the correct NODULE as
part of the data structure. The second is to create an instance of a rule only
when it is necessary to evaluate that particular rule, and to dispose of the rule
when it is no longer needed. The first method is much faster than the second,
since at the time of the consultation the code for all rules is in core. The
second method is extremely core efficient, however, since only a few rules will
be active at any given time. This method is particularly suited for a small
machine environment.

One of the advantages of this MAINSAIL approach is that there is no linking
step in compiling modules as in other algorithmic languages (e.g., SAIL). Thus
rule modules may be changed at will without relinking the entire system. The
cost for the flexibility NAINSAIL offers is the overhead of intermodule calls in
a dynamic memory environment - modules do not always load at the same address.

SAIL/LEAP Implementation

The LEAP package of SAIL offers yet another approach (4). Among the LEAP
facilities are procedures which "assign" an ITEM (the basic element of LEAP1 with
a SAIL procedure and "apply" executes the procedure associated with an ITEM.
Since ITEM's are part of the data store, and can be manipulated in data
structures, this allows the needed interactions of control store and data store.

The strategy in SAIL is to associate an ITEM with each of the basic
procedures for each rule. These ITEM's are stored so they can be retrieved when
the appropriate rule is invoked. There are several points where special care
must be taken. The program to modify the knowledge base must update several
files in this implementation; 1) a header file which contains the declaration of
all ITEM's used in the system, 2) an initialization procedure which creates all
the triples, performs all the assigns, etc. needed, and 3) the actual code for
the rule.

The advantages of the SAIL version is a somewhat more direct mapping of the
data to a single procedure representing a rule. Adding a rule will be more
cumbersome. The new rule can be stored in a file by itself, and required in the
initialization module as a REQUIREId LOAD!MODULE. Thus only the neu rule and the
initialization need to be recompiled but the whole system must be relinked.

--____-----__-----______________________~~~~~~----~------------------------------
(4) LEAP is a facility added to SAIL for the associative storage, retrieval,

and manipulation of objects. See Feldman, J.A. and Rovner, P.D., "An ALGOL-Based
Associative Language," CACN 12, 8, August 1969.

31 J. Lederberg & E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

Summary of Preliminary Results

A highly stripped down, seven rule "MYCIN" system has been successfully
emulated using each of these approaches. These systems merely indicated the
workability of each approach but the system was not complex enough to draw any
quantitative conclusions about relative efficiency. Each of the methods has its
advantages and disadvantages. SAIL, like LISP, requires a large core image and
currently runs only on POP-10 systems. The MAINSAIL version seems well suited to
a small machine environment through the high modularization and dynamic memory
management. By use of a virtual data structure, the rule interpretation approach
could be made to run in a smaller core irnage as well.

It must be noted that no implementation of MYCIN in an algorithmic language
will maintain the full flexibility of the INTERLISP version for rule changes,
control structure experimentation, and debugging. One must be willing to trade
the flexibility of a development system requiring large resources for a more
fixed production oriented system with substantially smaller demands.

2.1.2.6 USER SOFTWARE AND INTRA-COMMUNITY COMMUNICATION

We have continued to assemble and maintain a broad range of utilities and
user support software. These include operational aids, statistics packages, DEC-
supplied programs, improvements to the TOPS-10 emulator, text editors, text
search programs, file space management programs, graphics support, a batch
program execution monitor, text formatting and justification assistance, and
magnetic tape conversion aids. Over the past year we have made changes and
updates to more than 60 programs in this stable. While many of these changes
were maintenance bug fixes, major improvements were made to SPELL, MACRO, BACKUP,
DIABLO, tape service programs, VIEW, and the user spooler interface. In addition
we have brought up a number of new programs including PASCAL (DECUS), ENACS (a
display oriented editor from HIT - installed by NcPlahon at SRI), overload control
information programs, NACLISP (NIT), and FAIL. Changes are in progress to the
bulletin board system to allow string searches in the "subject" and "body" of
bulletins to find information of interest and to allow general wild card
specifications within strings.

2.1.2.7 DOCUMENTATION ANO EDUCATION

We have spent considerable effort to develop, maintain, and facilitate
access to our documentation so as to accurately reflect available software. The
HELP and Bulletin Board systems have been important in this effort. As
subsystems are updated, we generally publish a bulletin or small document
describing the changes. As more and more changes occur, it becomes harder and
harder for users to track down all of the change pointers. We are in the process
of revieuing the existing documentation system again for compatibility with the
programs nou on line and to integrate changes into the main documents. This will
also be done with a view toward developing better tools for maintaining up-to-
date documentation.

J. Lederberg & E. Feigenbaum 32

TECHNICAL PROGRESS Section 2.1.2.8

2.1.2.8 SOFTMARE_ COMPATIBILITY AN9 SHARING

At SUMEX-AIM we firmly believe in importing rather than reinventing
software uhere possible. As noted above, a number of the packages we have
brought up are from outside groups. Many avenues exist for sharing between the
system staff, various user projects, other facilities, and vendors. The advent
of fast and convenient communication facilities coupling communit ies of computer
facilities has made possible effective intergroup cooperation and decentralized
maintenance of software packages. The TENEX sites on the ARPANET have been a
good model for this kind of exchange based on a functional division of labor and
expertise. The other major advantage is that as a by-product of the constant
communication about particular software, personal connections between staff
members of the various sites develop. These connections serve to pass general
information about software tools and to encourage the exchange of ideas among the
sites. Certain common problems are now regularly discussed on a multi-site
level. We continue to draw significant amounts of system software from other
ARPANET sites, reciprocating with our own local developments. Interactions have
included mutual backup support, hardware configuration experience, operating
system enhancements, utility or language software, and user project
collaborations. We have been able to import many new pieces of software and
improvements to existing ones in this way. Examples of imported software include
the message manipulation program PlSG, TENEX SAIL, TENEX SOS, INTERLISP, the
RECORD program, ARPANET host tables, and many others. Reciprocally, we have
exported our contributions such as the drum page migration system, KI-10 page
table efficiency improvements, GTJFN enhancements, PUB macro files, the bulletin
board system, MAINSAIL, SPELL, SNDMSG enhancements, our BATCH monitor, and
improved SA-10 software.

33 J. Lederberg & E. Feigenbaum

Section 2.1.3 RESOURCE MANAGEMENT

2.1.3 RESOURCE MANAGEMENT

2.1.3.1 ORGANIZATION

The SUMEX-AIM resource is administered within the Genetics Department of
the Stanford University Medical School. Its mission, locally and nationally,
entails both the recruitment of appropriate research projects interested in
medical AI applications and the catalysis of interactions among these groups and
the broader medical community. User projects are separately funded and
autonomous in their management. They are selected for access to SUMEX on the
basis of their scientific and medical merits as well as their commitment to the
community goals of SUMEX. Currently active projects span a broad range of
application areas such as clinical diagnostic consultation, molecular
biochemistry, belief systems modeling, mental function modeling, and instrument
data interpretation (descriptions of the individual collaborative projects are in
Section 4 beginning on page 61).

Early this year it was announced that Professor Lederberg had been named
president of Rockefeller University. Whereas the SUMEX staff at Stanford will
miss the face-to-face contacts of his involvement in SUMEX-AIM, his relocation
may even broaden and strengthen the biomedical research base that will be
represented in our AI applications. Professor Lederberg has expressed a strong,
continuing commitment to medical AI applications and to SUMEX. The network and
message facilities provide a mechanism to continue his close participation in
this research and AIM Executive Committee activities.

The depth of the Stanford multi-disciplinary support of SUMEX-AIM has been
a key asset in being able to bridge this management transition. Professor Edward
Feigenbaum, who is chairman of the Stanford Computer Science Department and has
long been the co-principal investigator of SUNEX-AIM, will take over as PI.
Professor Stanley Cohen, who has been PI of the MYCIN project and on the Stanford
SUMEX advisory committee, will provide the biomedical ties and coordination with
the Stanford Medical School and projects. The new management team is committed
to sustaining the active development of the SUMEX-AIM resource and community.

2.1.3.2 MANAGEMENT COMl‘lITTEES

As the SUMEX-AIM project is a multilateral undertaking by its very nature,
we have created several management committees to assist in administering the
various portions of the SUHEX resource. As defined in the SUMEX-AIM management
plan adopted at the time the initial resource grant was auarded, the available
facility capacity is allocated 40% to Stanford Medical School projects, 40% to
national projects, and 20% to common system development and related functions.
Within the Stanford aliquot, Dr. Lederberg and BRP have established an advisory
committee to assist in selecting and allocating resources among projects
appropriate to the SUMEX mission. The current membership of this committee is
listed in Appendix IV.

J. Lederberg & E. Feigenbaum 34

RESOURCE MANAGEMENT Section 2.1.3.2

For the national community, two committees serve complementary functions.
An Executive Committee oversees the operations of the resource as related to
national users and makes the final decisions on authorizing admission for
projects. It also establishes policies for resource allocation and approves
plans for resource development and augmentation within the national portion of
SUMEX (e.g., hardware upgrades, MAINSAIL development priorities, etc.>. The
Executive Committee oversees the planning and implementation of the AIM Workshop
series currently implemented under Prof. S. Amarel of Rutgers University and
assures coordination with other AIM activities as well. The committee will play
a key role in assessing the possible need for additional future AIM community
computing resources and in deciding the optimal placement and management of such
facilities. The current membership of the Executive committee is listed in
Appendix IV.

Reporting to the Executive Committee, an Advisory Group represents the
interests of medical and computer science research relevant to AIM goals. The
Advisory Group serves several functions in advising the Executive Committee; 1)
recruiting appropriate medical/computer science projects, 2) reviewing and
recommending priorities for allocation of resource capacity to specific projects
based on scientific quality and medical relevance, and 3) recommending policies
and development goals for the resource. The current Advisory Group membership is
given in Appendix IV.

These committees have actively functioned in support of the resource.
Except for the meetings held during the AIM workshops, the committees have "met"
by messages, net-mail, and telephone conference owing to the size of the groups
and to save the time and expense of personal travel to meet face to face. The
telephone meetings, in conjunction with terminal access to related text
materials, have served quite well in accomplishing the agenda business and
facilitate greatly the arrangement of meetings. Other solicitations of advice
requiring review of sizable written proposals are done by mail.

We uill continue to work with the management committees to recruit the
additional high quality projects which can be accommodated and to evolve resource
allocation policies uhich appropriately reflect assigned priorities and project
needs. We hope to make more generally available information about the various
projects both inside and outside of the community and thereby to promote the
kinds of exchanges exemplified earlier and made possible by network facilities.

2.1.3.3 NEW PROJECT RECRUITING

The SUMEX-AIM resource has been announced through a variety of media as
uell as by correspondence, contacts of NIH-BRP with a variety of prospective
grantees who use computers, and contacts by our own staff and committee members.
The number of formal projects that have been admitted to SUMEX has more than
doubled since the start of the project; others are working tentatively as pilot
projects or are under review.

We have prepared a variety of materials for the neu user- ranging from
general information such as is contained in a SUMEX-AIM overview brochure to more

35 J. Lederberg C. E. Feigenbaum

Section 2.1.3.3 RESOURCE MANAGEMENT

detailed information and guidelines for determining whether a user project is
appropriate for the SUMEX-AIM resource. Dr. E. Levinthal has prepared a
questionnaire to assist users seriously considering applying for access to SUMEX-
AIM. Pilot project categories have been established both within the Stanford and
national aliquots of the facility capacity to assist and encourage projects just
formulating possible AIPl proposals pending their application for funding support
and in parallel formal application for access to SUHEX. Pilot projects are
approved for access for limited periods of time after preliminary review by the
Stanford or AIM Advisory Group as appropriate to the origin of the project.

These contacts have sometimes done much more than provide support for
already formulated programs. For example, Prof. Feigenbaum's group at Stanford
has initiated a major collaborative effort with Dr. Osborn's group at the
Institutes of Medical Sciences in San Francisco. This project in "Pulmonary
Function Monitoring and Ventilator Management - PUFF/VM" (see Section 4.1.6 on
page 93) originated as a pilot request to use HLAB in a small way for modeling.
Subsequently the AI potentialities of this domain were recognized by Feigenbaum,
Nii, and Osborn who have submitted a joint proposal to NIH and have a pilot
status at present. This summer Dr. John Kunz from Dr. Osborn's laboratory is
planning to spend half t ime at Stanford to learn more about AI research and to
participate more closely in the development of the PUFF/VM program.

The following lists the fully authorized projects currently comprising the
SUMEX-AIM community (see Section 4 for more detailed descriptions). The nucleus
of five projects that were authorized at the initial funding of the resburce in
December 1973 are marked by 'I<*>".

National Community -

1) Acquisition of Cognitive Procedures (ACT); Dr. J. Anderson (Yale
University)

2) Chemical Synthesis Project (SECS); Dr. T. Wipke (University of California
at Santa Cruz)

<*> 3) Higher Mental Functions Project; K. Colby, M.D. (University of California
at Los Angeles)

4) INTERNIST Project; J. flyers, M.D. and Dr. ti. Pople (University of
Pittsburgh)

5) Medical Information Systems Laboratory (HISL); J. Wilensky, M.D. and Dr.
8. McCormick (University of Illinois at Chicago Circle)

6) Pulmonary Function Project (PUFF/VM); J. Osborn, M.D. (Institutes of
Medical Sciences, San Francisco) and Dr. E. Feigenbaum (Stanford
University)

<*> 7) Rutgers Computers in Biomedicine; Dr. S. Amarel (Rutgers University)

8) Simulation of Comprehension Processes; Drs. J. Green0 and A. Lesgold
(University of Pittsburgh1

J. Lederberg & E. Feigenbaum 36

RESOURCE MANAGEMENT Section 2.1.3.3

Stanford Community -

1) AI Handbook Project; Dr. E. Feigenbaum

<X> 2) DENDRAL Project; Drs. C. Djerassi, J. Lederberg, and E. Feigenbaum

3) Generalization of AI Tools (AGE); Dr. E. Feigenbaum

4) Large Multi-processor Arrays (HYDROID); Dr. G. Wiederhold

5) Molecular Genetics Project (MOLGEN); Drs. J. Lederberg and E. Feigenbaum

<*> 6) MYCIN

(Stanford) and N. Martin (University of New Plexico)

Project; S. Cohen, M.D. and Dr. B. Buchanan

in Structure Modelling; Drs. E. Feigenbaum and R. Enge <*> 7) Prote lmore

As an additional aid to new projects or collaborators with existing
projects, we provide a limited amount of funds for use to support terminals and
communications needs of users without access to such equipment. We are currently
leasing 6 terminals and 4 modems for users as well as 4 foreign exchange lines to
better couple the Rutgers project into the TYMNET and a leased line between
Stanford and U. C. Santa Cruz for the Chemical Synthesis project.

2.1.3.4 STANFORD COMMUNITY BUILDING

The Stanford community has undertaken several internal efforts to encourage
interactions and sharing between the projects centered here. Professor
Feigenbaum organized a project with the goal of assembling a handbook of AI
concepts, techniques, and current state-of-the-art. This project has had
enthusiastic support from the students and substantial progress made in preparing
many sections of the handbook (see Section 4.2.1 on page 123 for more
details>.

Weekly informal lunch meetings (SIGLUNCH) are also held between community
members to discuss general AI topics, concerns and progress of individual
projects, or system problems as appropriate as well as having a number of outside
invited speakers.

2.1.3.5 m WORKSHOP SUPPORT

The Rutgers Computers in Biomedicine resource (under Dr. Saul Amarel) has
organized a series of workshops devoted to a range of topics related to
artificial intelligence research, medical needs, and resource sharing policies
within NIH. Meetings have been held for the past several years at Rutgers and
another is planned for this summer. The SUrIEX facility has acted as a prime

37 J. Lederberg & E. Feigenbaum

Section 2.1.3.5 RESOURCE MANAGEMENT

computing base for the workshop demonstrations. We expect to continue this
support for future workshops. The AIM workshops provide much useful information
about the strengths and weaknesses of the performance programs both in terms of
criticisms from other AI projects and in terms of the needs of practicing medica
people. We plan to continue to use this experience to guide the community
building aspects of SUMEX-AIM.

2.1.3.6 RESOURCE ALLOCATION POLICIES

As the SUMEX facility has become increasingly loaded, a number of diverse
and conflicting demands have arisen which require controlled allocation of
critical facility resources (file space and central processor time). We have
already spelled out a policy for file space management; an allocation of file
storage is defined for each authorized project in conjunction with the management
committees. This allocation is divided among project members in any way desired
by the individual principal investigators. System allocation enforcement is
implemented by project each week. As the weekly file dump is done, if the
aggregate space in use by a project is over its allocation, files are archived
from user directories over allocation until the project is within its allocation.

We have recently implemented system scheduling controls to attempt to
maintain the 40:40:20 balance in terms of CPU utilization (see page 14) and to
avoid system and user inefficiencies during overload conditions. The initial
complement of user projects justifying the SUPlEX resource was centered to a large
extent at Stanford. Over the past five years of the SUMEX grant, a substantial
grouth in the number of national projects was realized. During the same time the
Stanford group of projects has matured as well and in practice the 40~40 split
between Stanford and non-Stanford projects is not ideally realized (see Figure 11
on page 47 and the tables of recent project usage on page 50). Our job
scheduling controls bias the allocation of CPU time based on percent time
consumed relative to the time allocated over the 40:40:20 community split. The
controls are "soft" however in that they do not waste computer cycles if users
below their allocated percentages are not on the system to consume the cycles.
The operating disparity in CPU use to date reflects a substantial difference in
demand between the Stanford community and the developing national projects,
rather than inequity of access. For example, the Stanford utilization is spread
over a large part of the 24-hour cycle, while national-AIM users tend to be more
sensitive to local prime-time constraints. (The S-hour time zone phase shift
across the continent is of substantial help in load balancing.) During peak
times under the new overload controls, the Stanford community still experiences
mutual contentions and delays while the AIM group has relatively open access to
the system. For the present, we propose to continue our policy of "soft"
allocation enforcement for the fair split of resource capacity.

Our system also categorizes users in terms of access privileges. These
comprise fully authorized users, pilot projects, guests, and network visitors in
descending order of system capabilities. We want to encourage bona fide medical
and health research people to experiment with the various programs available with
a minimum of red tape while not allowing unauthenticated users to bypass the
advisory group screening procedures by coming on as guests. So far we have had

J. Lederberg & E. Feigenbaum 38

RESOURCE MANAGEMENT Section 2.1.3.6

relatively little abuse compared to what other network sites have experienced,
perhaps on account of the personal attention that senior staff gives to the logon
records, and to other security measures. However, the experience of most other
computer managers behooves us to be cautious about being as wide open as might be
preferred for informal service to pilot efforts and demonstrations. We will
continue developing this mechanism in conjunction with management committee
policy decisions.

39 J. Lederberg G E. Feigenbaum

Section 2.1.4 FUTURE PLANS

2.1.4 FUTURE PLANS

This next year will be the first of the 3 year renewal grant term. The
principal goals of our work are outlined below. Objectives for the individual
collaborating projects are discussed in their respective reports (see Section 4
on page 61).

1) RESOURCE OPERATIONS

We will continue to make available to the SUMEX-AIM communit ies an
effective, state-of-the-art facility to support the development of medical AI
programs and to facilitate collaborations between community members. Goals
include:

a) Assure a smooth transition in project management as Professor Lederberg
moves to Rockefeller University.

b) Continue development of the existing KI-TENEX facility to maximize
effectiveness for community use. We expect to continue improving system
efficiency, allocation controls, subsystem software, documentation
facilities, and communications facilities. We will complete the evaluation
of the TELENET network as a more cost-effective source of communication
services. Another key issue will be how best to maintain software
compatibility between TENEX and the newer releases of DEC's TOPS-20. This
may entail another "compatibility package" to translate system calls from
one system to the other.

c) Recruit new applications and projects to broaden the range of high quality
medical AI applications. We look forward to Prof. Lederberg's efforts at
Rockefeller University to try to stimulate new projects as well as others
that might be suggested by advisory group members or other contacts.

d) We plan to work closely with other AIM resource nodes, such as the one
being implemented at Rutgers this summer, to ensure effective community
support between the facilities and to take advantage of expertise in
various user groups for system and user software development.

e) We plan to finish the preliminary evaluation of the new DEC 2020 system and
to make a recommendation for acquiring one by the end of calendar 1975.
The council-approved budget allocation for this machine in year 07. We
expect the technological rationale and community need for the use of such a
machine for increased capacity and an effective software export mode to
mature in year 06. Thus it would be desirable to move this expenditure
foruard. This may not be possible within NIH appropriation limitations and
so we uould have to defer delivery until year 07. As part of the
acquisition of the 2020 system, we expect to investigate the many issues
that will arise from the decentralization such machines will bring. The
availability of these machines bodes many advantages for effective support
of community computing needs but dangers as well of decreased sharing and
softuare compatibility.

J. Lederberg & E. Feigenbaum 40

FUTURE PLANS Section 2.1.4

2) TRAINING AND EDUCATION

Within our resources, we will continue to assist new and established user
projects in gaining access to SUMEX-AIM facilities. Collaborating projects will
provide their own manpower and expertise for the development and dissemination of
their AI programs.

a) We will continue to provide a high standard of system documentation and
l imited staff assistance for user problems.

b) Council disapproved our plan to support a "visiting scientist" position to
bring selected investigators in contact with on-going AI projects. Funds
were approved to support "collaborative linkages". These will continue to
be used to facilitate project communications with the resource.

c) We will provide continued support for the AIM workshop activities in the
form of demonstration support, participation in workshop discussions, and
assistance for potential pilot users in understanding the SUMEX-AIM
:ommunity.

3) CORE RESEARCH

Our core research efforts for the next year will emphasize the research
work discussed in our proposal but the level of effort will reflect the budget
cuts recommended by Council. This effect will be particularly hard felt in the
MAINSAIL project.

a) We will provide core research support to about 1.6 staff FTE's and 1
graduate research assistant for the documentation and generalization of AI
tools developed in the context of particular applications projects. This
work will complement the on-going project developments by providing a link
to make results available to the entire community. We plan to partially
support the AGE project and the AI handbook project. The detailed research
goals of these projects are summarized in Section 4.2.1 and Section
4.2.3.

b) Within the council-approved manpower level for MAINSAIL (2 FTE's), we will
only be able to complete a demonstration of the MAINSAIL system. A wide
distribution of the language, credible support of a user community, and
investigation of implementations for other target machines are well beyond
this level of effort. For the next year we plan to complete a debugged
compiler that will run on a 2SK PDP-11, tutorial and reference manuals
(including procedures for bringing up NAINSAIL on new target machines), an
interactive symbolic debugger (providing breakpoints, variable examination,
single stepping, etc.), and documentation of the key design issues
encountered in defining a machine-independent language. Also over this
year we will investigate ways in which this demonstration version of
MAINSAIL could be transferred to an environment with the necessary
resources to extend, distribute, and maintain it properly.

41 J. Lederberg & E. Feigenbaum

Section 2.2 FUTURE PLANS

2.2 SUMMARY !JJ RESOURCE USAGE

The following data give an overview of SUMEX-AIM resource usage. There are
five subsections containing data respectively for 1) system loading, 2) system
efficiency, 31 resource use by community, 4) resource use by project, and 5)
network use.

2.2.1 SYSTEM LOADING

The following plots display several different aspects of system loading
over life of the project. These include total CPU time delivered per month, the
“peak ‘I number of jobs logged in, and the “peak” load average. The term “peak”
refers to the peak of the monthly diurnal loading curve for each variable which
in turn is the average of the individual daily diurnal curves. Thus, “peak”
values are quite representative of average monthly peak loading and do not
reflect individual days. These data show well the continued growth of SUPlEX use
and the self-limiting saturation effect of system load average. Since late 1976,
when the dual processor capacity became fully used, the peak daily load average
has remained at about 6. This is a measure of the user capacity of our current
hardware configuration and the mix of AI programs.

600

500

400

300

200

100

0

Totat CPU Usage

Dual

256K Memory Added
Disks Upgraded

Processor
Instal.led

111, ,,,,,,,, ,,,,,,,,,,,,,,) ,,,,,,,,, ‘, ,, P

FXiONDJFMAMJJASOND~FM~MJJ~SONDjFMAMJJ~SOND~FMf l
1975 1976 1977 1978

Figure 6. CPU Time Consumed by Month

V. Lerlerberg C E. Feigenbaum 42

SYSTEM LOADING Section 2.2.1

40

30

20

10

0

I-

a

6

4

2

0

PeaK Jobs Loqged In

1975 1976 I.977

Figure 7. Peak Number of Jobs by Month

PeaK Load herage

256K Memory Added
Disks Upgraded

Dual Processor
Installed

256K Memory Added
Disks Upgraded

Dual Processor
Installed

ASONDjFMAMJ-JRSONDJFMAMJJRSONDiFMfiMJJRSONDJFMfi
1975 1976 1977 1978

Figure 8. Peak Load Average by Month

43 J. Lederberg & E. Feigenbaurn

Section 2.2.2 SYSTEM EFFICIENCY

2.2.2 EFFICIENCY SYSTEM

The following plots show two measures of system overhead and the influence
of harduare augmentations on them. The first is "total overhead" which includes
scheduler time, I/O wait, and core management time. The second shows "page trap"
time uhich is charged to user run time but reflects lost t ime in working set
management for each job. Note the sharp rise in overhead with the introduction
of the dual processor caused by the increased memory contention. This overhead
drops back to single processor levels after we doubled memory. The peak around
February/March 1975 is anomalous and reflects testing of the drum and disk
systems during installation.

30

20

10

0

J
L
t

256K Memory Added
Disks Upgraded

Dual Processor
Installed

-llIIJlllllllllll/lllll,,Illl lllllllllll ill,

ASONDJFM~V~JJ~~SUNDJFMRMJJ~T~~NDJFM~=IMJJRSONDJFM~I
1975 1976 1977 1973

Figure 9. System Overhead by Month

J. Lederberg & E. Feigenbaum 44

SYSTEM EFFICIENCY Section 2.2.2

15

10

5

0

Page Trap T lme

t

P
256K Memory Added
Disks Upgraded

Dual Processor
Installed

RSOND~FMflMJJASOND~FMAMJJf3SOND.iFMf3MJJf lSOND.iFMf3
1975 1976 1977 1978

Figure 10. Page Trap Time by Month

45 J. Lederberg & E. Feigenbaum

Section 2.2.3 RELATIVE SYSTEM LOADING BY COMMUNITY

2.2.3 RELATIVE SYSTEM LOADING BY COWlUNITY

The SUMEX resource is divided, for administrative purposes, into 3 major
communities: user projects based at the Stanford Medical School, user projects
based outside of Stanford (national AIM projects), and common systems development
efforts. As defined in the resource management plan approved by BRP at the start
of the project, the available system CPU capacity and file space resources are
divided between these communit ies as follows:

Stanford 40%
AIM 40%
Staff 20%

The "available" resources to be divided up in this way are those remaining after
various monitor and community-wide functions are accounted for. These include
such things as job scheduling, overhead, network service, file space for
subsystems, documentation, etc.

The monthly usage of CPU and file space resources for each of these three
communit ies relative to their respective aliyuots is shown in the plots in Figure
11 and Figure 12. Terminal connect time is shown in Figure 13. It is clear that
the Stanford projects have held an edge in system usage despite our efforts at
resource allocation and the substantial voluntary efforts by the Stanford
community to utilize non-prime hours. This reflects the development of the
Stanford group of projects relative to those getting started on the national side
and has correspondingly accounted for much of the progress in AI program
development to date.

J. Lederberg C E. Feigenbaum 46

RELATIVE SYSTEPl LOADING BY COMMUNITY Section 2.2.3

40 1 Nat lona I AIM

lo-

o ll1l~1l1Illlll1l~ll1llllllll(lrlll~IIIlllIltlI~llll
RSONDJFMAMJJASONDJFMRMJJ~SONDJFf l f3MJJf3SONDJFMfl

1975 1976 1977 1978

40- Stanford

30-

0 llll~llllllll1ll~llllllllllllli~~lllIllllll~lll~

~~SONDJFMAMJJ~W~NDJFM~=~MJJRSONDJFM~?MJJ~=ISONDJFMI=~
1975 1976 1977 1978

o!llIl/ll,,,,,,,l,ll,,,l,,,l,,~,ll,,,,ll,,~,l‘,

~~SONDJFMAMJJASONDJFMRMJJ~C~ONDJFMFIMJJRSONDJFMR
1975 1976 1977 1978

Figure 11. Monthly CPU Usage by Community

47 J. Lederberg C E. Feigenbaurn

Section 2.2.3

407 Nat rona! RIM

30-

RELATIVE SYSTEM LOADING BY COMMUNITY

10- Disks Upgraded

O~llll~ill,,,,,,,,(,,,,,,,,,,l~l,l,,,,l~,llll,l,

KiONDJFMAMJJASONDJFM~MJJRSONDJFMAMJJASONDJFMf l
1975 1976 1977 1978

40-

30-

20
1

lo- Disks Upgraded

0 llll~lllllllllll~~~ll~li~~lltll,,li,l,,,l,,,~

~SONDJFMRMJJR~ONDJFMRP~JJ~ISONDJFMRMJJ~C~ONDJFM~I
1975 1976 1977 1978

t

Disks Upgraded

0 llll~llllllllllll~ll~ll,l,,,tl ,,,,,,, ll,t,,l,

ASONDJFMAMJJASONDJFMRMJJASONDJFMAMJJASONDJFMf i
1975 1976 1977 1978

Figure 12. Monthly File Space Usage by Community

J. Lederberg & E. Feigenbaum 48

RELATIVE SYSTEM LOADING BY COMPlUNITY
Section 2.2.3

4000- Nat ional RlM

3000-

2000-

4000-
Stanford

3000-

2000-

lOOO-

0!IIl~~‘lI”“““~““~‘l”“l”l”“““~“l’

~SONDJFMRMJJRSONDJFMAMJJASONDJFMAMJJf lSONDJFMf l
197s 1976 1977 1978

4000
{

Staff

011II’tII’l’1~““~~““‘~‘~~‘I’~‘~~’~”’~t””

fWlNDJ&AMJJRSONDJFMAMJJASONDJFMRMJJ~SONDJFM~
1975 1976 1977 1978

Figure 13. Monthly Terminal Connect Time by Community

49 J. Lcderber-g & E. Feigenbaum

Section 2.2.4 INDIVIDUAL PROJECT AND COMMUNITY USAGE

2.2.4 INDIVIDUAL PROJECT m COMMUNITY USAGE

The table following shows cumulative resource usage by project in the past
grant year. The data displayed include a description of the operational funding
sources (outside of SUMEX-suppl ied computing resources) for currently active
projects, total CPU consumption by project (Hours), total terminal connect time
by project (Hours), and average file space in use by project (Pages, 1 page = 512
computer words). These data were accumulated for each project for the months
between flay 1977 and April 1978. Again the well developed use of the resource by
the Stanford community can be seen. It should be noted that the Stanford
projects have voluntarily shifted a substantial part of their development work to
non-prime time hours which is not shoun in these cumulative data. It should also
be noted that a significant part of the DENDRAL and MYCIN efforts, here charged
to the Stanford aliquot, support development efforts dedicated to national
community access to these systems. The actual demonstration and use of these
programs by extramural users is charged to the national community in the “AIM
USERS” category, however.

J. Lederberg C E. Feigenbaum 50

